
User Manual

for

SQL Observer
- a subset of .

Global iSeries Application Performance Analyzer

V06M00D

TM

www.giapa.com

http://www.giapa.com/

Page 2 Documentation of “SQL Observer” GiAPA © by iPerformance

Table of contents:

Page 3: Introduction to GiAPA’s “SQL Observer” feature

Page 4: Submit job to collect Plan Cache dumps for SQL Statements

Page 5: Explanation of how the data collection works

Page 6: Displaying the “SQL Observer” results

Page 7: Displaying Current User names

How to stop “SQL Observer” data collection

Page 8: Installation of the “SQL Observer” and the software security code

 Uninstalling “SQL Observer”

Page 9: Brief introduction to the software product GiAPA

A brief introduction to GiAPA is included on page 8.

Complete GiAPA introduction, references, downloads, etc.: www.giapa.com

Link to additional GiAPA documentation: https://www.giapa.com/GiAPA_Links.pdf

The full GiAPA Menu gives an impression of all the functions available:

http://www.giapa.com/
https://www.giapa.com/GiAPA_Links.pdf
https://www.giapa.com/GiAPA_Links.pdf

GiAPA © by iPerformance Documentation of “SQL Observer” Page 3

SQL Observer: Plan Cache dumps based on Job Watcher data

The intensive and increased use of SQL has made optimization of frequently used SQL
statements one of the most rewarding ways of saving server resources. IBM’s “SQL
Performance Center” in the Database section of the Access Client Solution (ACS) tool is the
gold standard for analysis of Access Plan snapshots from the Plan Cache. Therefore, analysis
of the efficiency of SQL statements was not part of the initial design of GiAPA.

Collected Plan Cache data available within ACS.

The Plan Cache data documenting the access methods selected by the Query Optimizer is
maintained dynamically in main storage when SQL is running. If the run environment changes,
e.g. due to other jobs running, the Access Plan for an SQL statement may be changed. This
results in generation of new Plan Cache data, often causing a notable change of the run time.

However, the Plan Cache data is not dumped automatically given it would consume excessive
resources. An IBM performance expert recently suggested that a tool offering an automated and
user-controlled dumping of Access Plans that might be wanted for analysis could be a popular
option. This idea is implemented as GiAPA’s “SQL Observer” available on the GiAPA Menu.

The unique QRO code identifying an SQL activity
(one or more SQL-statements for a job and table)
must be supplied when requesting a dump of Access
Method information. Therefore, the first step for
GiAPA’s SQL Observer is to run IBM’s Job Watcher,
requesting the QRO code(s) for job(s) specified by
the user. At the same time the user defines the
frequency for returning Job Watcher data and for
dumping Access Plans. An additional parameter
defines the number of days the collected data is kept.

This provides numerous possibilities: a special situation may justify collection of data every few
seconds e.g. for one or a few jobs. This results in very detailed information collected for these
selected case(s) without overall using excessive resources for the data collection. For the
normal everyday workload, collection of data every two or five minutes may suffice.

One of the columns available within the collected Job Watcher data contains the Current User
Name, which often is wanted in connection with analyzing heavy resource usage. GiAPA’s SQL
Observer also includes displaying user names per job and collection interval.

Page 4 Documentation of “SQL Observer” GiAPA © by iPerformance

Command GIAPA610: Submit Job GIAPAJWCOL (Data Collection)

DATALIB defines the name of the library where the collected Plan Cache data is stored.

RUNMINUTES defines how long time the data collection should run. If *NOMAX is used for
RUNMINUTES, the collection will continue until stopped by using command GIAPA630. This
command can also be initiated from GiAPA Menu option 63.

Specify *NONE to only remove data older than KEEPPCDAYS – no collection will be started.

JWCOLSECS defines the interval in seconds between each collection of Job Watcher data.
This obviously also affects the resources used by the collection – very frequent collections imply
somewhat higher CPU usage and data volume.

PCDMPMINUT defines how often the Plan Cache dumps is scheduled. The Job Watcher data
collection routine will be interrupted shortly, allowing GiAPA to dump the Plan Cache data for the
QRO codes collected.

KEEPPCDAYS defines how long time the Plan Cache data fetched by GiAPA is stored. GiAPA
will automatically delete expired collections.

JOB may be used for selection of max 20 (generic) job names, user names, and/or job
numbers, thereby excluding all other jobs from this SQL Access Plan data collection.

Please refer to the job log in case of any errors – keyword parameters from this command are
used to generate an ADDJWDFN command – IBM’s rules for that command apply also here.

JOBQ has as default QSYSNOMAX defined within subsystem QSYSWRK – this is the queue
normally used for, e.g. performance data collection.

An SQL activity can be based on one or more SQL statements, together defining the SQL
function. GiAPA does not save more than five statements per QRO code, and displays only the
first three codes which normally is sufficient to identify the case.

GiAPA © by iPerformance Documentation of “SQL Observer” Page 5

For every JWCOLSECS interval, Job Watcher will for the selected jobs save the Job-Ids running
SQL, the SQL statements, and the QRO codes identifying the SQL statements. The data
collected is passed to GiAPA’s SQL Observer at the end of every PCDMPMINUT interval.

A given QRO code may be included

• only once if the SQL statement only was active briefly within only one job, or

• repeatedly if the SQL statement was active longer time and/or within more jobs.

GiAPA’s SQL Observer will for each QRO code request a Plan Cache dump of the Access Plan
which can serve as input for the IBM ACS SQL Performance Center. A dumped Access Plan
consists of several rows/records, each having a length of more than 10K and containing 282
rows/fields. Although the data collection does not use much CPU, the large volume of data
forces the user to avoid collecting data for any unnecessary jobs.

Because data only is dumped at the end of a PCDMPMINUT interval, the dump for a QRO code
will reflect the Plan Cache data active at that point of time. A re-optimization replaces the old
Access Plan, which therefore becomes unavailable.

The below example uses JWCOLSECS set at 60 which saves Job Watcher data once per
minute, and PCDMPMINUT set at 15 meaning the data is passed to the SQL observer every 15
minutes.

The green square below illustrates a job running the same SQL statement for 20 minutes. The
narrow yellow fields represent one minute each, illustrating the JWCOLSECS=60 intervals. Job
Watcher stores QRO code(s) representing active SQL(s) of the selected job(s) at the end of
each 60 seconds interval. SQL Observer receives this data at the end of each PCDMPMINUT
interval, and requests a dump of the current Access Plan for each QRO code.

If re-optimization takes place at arrow number 2 (orange arrow), the Plan Cache dumps at the
end of the two PCDMPMINUT intervals will both contain the new Access Plan, because the
original plan was replaced before the end of the first interval.

But if the re-optimization takes place at arrow number 3 (blue arrow), the first Plan Cache dump
will reflect the original, not yet replaced Access Plan, and the second dump will contain the new
plan. Should re-optimization occur both at arrow 2 and arrow 3, then plans 2 and 3 are dumped.

A prerequisite for correct interpretation of the results
is to understand how the data collection works.

The illustration below provides a quick overview.

Page 6 Documentation of “SQL Observer” GiAPA © by iPerformance

Command GiAPA62 – Display Collected Plan Cache Data

DATALIB defines the library containing the dumped Plan Cache data and the GiAPA tables
used to control the display of the results.

ONLYMULTIP allows selection of only re-optimized QROs (more than one Access Plan saved).

JOBNAME and USERNAME allow (generic) selection of the jobs to be shown.

STARTTIME and ENDTIME allow defining time limits for the data to be shown.

The Access Plan Reasons and the Plan Cache record types listed above (“Table Scan”, etc.) do
not apply for the shown SQL statements – they are random examples of texts that may appear.

The pages are displayed in ascending sequence by Job Id and QRO code.

Each page contains the data belonging to one QRO code (= SQL activity) within a job. One job
may have accessed many different SQL statements, each resulting in a displayed page. Data
from a maximum of three different Access Plans are shown.

GiAPA © by iPerformance Documentation of “SQL Observer” Page 7

The SQL statement(s) belonging to the QRO code are shown in green. A QRO can cover
several SQL statements, but rarely more than three, which is the maximum displayed.

The documentation of the Plan Cache dumps collected includes the date, time, and names of
the latest three files containing Plan Cache snapshots. This information, together with the QRO
code, is necessary to locate the corresponding data within the IBM ACS SQL Performance
Center, when a performance analysis is required.

If an Access Plan is re-optimized, data for a maximum of two additional plans are displayed
which normally is sufficient. If more re-optimizations are expected, any remaining may be seen
by using the STARTTIME and ENDTIME keywords to limit the time frame.

Please note that more than one job may run the same SQL statement(s), thereby causing the
same QRO code(s) being saved which in turn leads to identical results shown for several jobs.

F6= Show Current User from the above panel displays the following panel with four columns of
current users and the date and time where the users were attached to the job.

Command GiAPA630 – Stop SQL Observer collection

Use of command GIAPA630 TERMINATE(Y) will cause an active SQL Observer collection of
Plan Cache data to terminate at the end of the current PCDMPMINUT interval.

Page 8 Documentation of “SQL Observer” GiAPA © by iPerformance

Installation of SQL Observer

The software can be downloaded from https://www.giapa.com/giapasql.zip . The downloaded

file must be unzipped on a PC using e.g. WinZip. The password needed to open the zipped file

can be obtained from iPerformance ApS or from a GiAPA distributor.

Remember that if FTP is used to transfer the downloaded save file to the server, you must use

FTP command bin to run in binary mode, and the receiving save file should be created on the

server before you start uploading from the PC.

Installation of SQL Observer is simply done by the running restore command:

RSTLIB SAVLIB(GIAPALIB) DEV(*SAVF) SAVF(your-savefile-name)

Authority needed: The SQL Observer data collection must run under a user profile having E =

Execute authority to the Job Watcher commands adding and deleting definitions and starting a

data collection.

Command GIAPA009: Install GiAPA Software Security Code

A valid software security code must be installed using CL-command GIAPALIB/GIAPA009.

SECCODE: The security code must always be specified.

UPDATECODE: The update code is not always used. It will be supplied when needed. If

only the security code is supplied, the update code should be left unchanged.

(To uninstall SQL Observer simply use CL-command DLTLIB GIAPALIB.)

https://www.giapa.com/giapasql.zip

GiAPA © by iPerformance Documentation of “SQL Observer” Page 9

Brief Introduction to GiAPA www.giapa.com

The objective of GiAPA is to enable the average programmer, operator, or systems analyst to

cope with i.e., identify and solve performance inefficiencies in applications running on the IBM

Power servers under IBM i. It was never meant to compete with the various performance tools

from IBM – GiAPA works differently and offers something else.

Launched in 2003 and continuously being updated and improved, GiAPA’s over 100.000 lines of

source code comprise a software product having very many features. The most advanced is

shown below: Fully automatic performance analysis of all jobs running on an LPAR,

documenting inefficiencies and solutions. The GiAPA data collection uses less than 0.1 % CPU.

Data collection and analysis in unattended batch. Examples shown are generated automatically.

http://www.giapa.com/

